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Motivation

Modeling of circumstellar disks

• Provide predictions for observations
• Derive constraints from existing observations

Radiative transfer code

• Versatile 3D approximation of the disk
• Dust grain heating (equilibrium + stochastic)
• Full wavelength coverage (scattering + thermal)
• Optical properties of various dust compositions
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Motivation

Available radiative transfer codes

• MCFOST (Pinte et al. 2006)
• Well-advanced
• Closed source

• POLARIS (Reissl et al. 2016; Brauer et al. 2017)
• Open source, own development
• Missing some key features

⇒ Use POLARIS and include missing features
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Grid types
– Cartesian (OcTree)
– Spherical
– Cylindrical
– Voronoi

Grid quantities
– Hydrogen density
– Dust density
– Gas temperature
– Dust temperature
– Velocity field
– Magnetic field strength

Additional data
– Emission sources (stars, ISRF, …)
– Detector parameter (direction, λ, …)
– Dust properties (silicate, carbon)
– Gas properties (LAMBDA, JPL, CDMS)
– Zeeman properties

Calculation modes
– Dust temperature distribution
– Stellar or dust emission scattered at spherical dust grains
– Thermal emission of dust grains (including dust grain alignment)
– Spectral line emission (including Zeeman splitting and N-LTE level populations)

Visualizations
– Emission maps (full Stokes)
– Line profiles (full Stokes)
– Optical depth and
column density maps

– 2D cuts through the grid
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Grid types
– Cartesian (OcTree)
– Spherical
– Cylindrical
– Voronoi

Grid quantities
– Hydrogen densities
– Dust densities
– Gas temperatures
– Dust temperatures
– Velocity field
– Magnetic field strength
– Dust composition
– Dust size limits

Additional data
– Emission sources (stars, ISRF, …)
– Detector parameter (direction, λ, …)
– Dust properties (silicate, carbon, Themis, …)
– Gas properties (LAMBDA, JPL, CDMS)
– Zeeman properties

Calculation modes
– Dust temperature distribution (including stochastic heating)
– Stellar or dust emission scattered at spherical dust grains (including ray-tracing approach)
– Thermal emission of dust grains (including dust grain alignment, ray-tracing customization)
– Spectral line emission (including Zeeman splitting and N-LTE level populations)

Visualizations
– Emission maps (full Stokes)
– Line profiles, SEDs (full Stokes)
– Optical depth and
column density maps

– 2D cuts through the grid



Variation of dust properties

Dust grain options

• Single composition and size distribution
• Mixture of several dust compositions

Use different dust per cell

dust 2
dust 3
dust 2

dust 1
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Variation of dust properties

Dust grain options

• Single composition and size distribution
• Mixture of several dust compositions

Use multiple density distributions

density 2density 1 overlap
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Variation of dust properties

Dust grain options

• Single composition and size distribution
• Mixture of several dust compositions

Use different size limits per cell

a6max

a7max

a8max

a3max

a4max

a5max

a1max a2max
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Stochastic heating

a . 10 nm, low C(T) a & 10 nm, high C(T)

T0

T � T0T0T � T0T0

photonphoton

T0

T1T2T3Tequ

photonphotonphoton

⇒ Probability distribution of temperatures instead of Tequ
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Stochastic heating
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THEMIS
The Heterogeneous dust Evolution Model
for Interstellar Solids
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aggregated core/mantle/ice
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increasing AV, nH, NH diffuse ISM

dense ISM

photo-processing

coagulation & ice mantle accretion

a-C:H accretion

Overview of the Themis model (Jones et al. 2017)
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THEMIS
The Heterogeneous dust Evolution Model
for Interstellar Solids

Size distribution (Jones et al. 2013)



Projects with POLARIS

Modeling GG Tau A

• Constrain disk parameter and predict observations
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Projects with POLARIS

Modeling GG Tau A

• Constrain disk parameter and predict observations

Polarized intensity
(Subaru/HiCIAO, Yang et al. 2017)
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Projects with POLARIS

Modeling GG Tau A

• Constrain disk parameter and predict observations

Polarized intensity
(Subaru/HiCIAO, Yang et al. 2017)
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Projects with POLARIS

Modeling GG Tau A

• Constrain disk parameter and predict observations

Modeling circumstellar disks (with Thomas)

• Aromatic and aliphatic infrared band emission
• Spatial variations (including gaps and cavities)
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Conclusions

Circumstellar disk modeling with POLARIS

• Implementation of required features
• Spatial variation of grain properties
• Stochastic heating
• THEMIS dust model

• Research projects
• Modeling the disk around GG Tau A
• Band emission in disks (with Thomas)

⇒ Numerous options for future projects

Thank you for your attention
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